Functional Genome Annotation by Combined Analysis across Microarray Studies of Trypanosoma brucei
نویسندگان
چکیده
BACKGROUND Functional annotation of trypanosomatid genomes has been a daunting task due to the low similarity of their genes with annotated genes of other organisms. Three recent studies have provided gene expression profiles in several different conditions and life stages for one of the main disease-causing trypanosomatids, Trypanosoma brucei. These data can be used to study the gene functions and regulatory mechanisms in this organism. METHODOLOGY/PRINCIPAL FINDINGS Combining the data from three different microarray studies of T. brucei, we show that functional linkages among T. brucei genes can be identified based on gene coexpression, leading to a powerful approach for gene function prediction. These predictions can be further improved by considering the expression profiles of orthologous genes from other trypanosomatids. Furthermore, gene expression profiles can be used to discover potential regulatory elements within 3' untranslated regions. CONCLUSIONS/SIGNIFICANCE These results suggest that although trypanosomatids do not regulate genes at transcription level, trypanosomatid genes with related functions are coregulated post-transcriptionally via modulation of mRNA stability, implying the presence of complex regulatory networks in these organisms. Our analysis highlights the demand for a thorough transcript profiling of T. brucei genome in parallel with other trypanosomatid genomes, which can provide a powerful means to improve their functional annotation.
منابع مشابه
An organism-specific method to rank predicted coding regions in Trypanosoma brucei.
Genome annotation in differently evolved organisms presents challenges because the lack of sequence-based homology limits the ability to determine the function of putative coding regions. To provide an alternative to annotation by sequence homology, we developed a method that takes advantage of unusual trypanosomatid biology and skews in nucleotide composition between coding regions and upstrea...
متن کاملTechnical data of the transcriptomic analysis performed on tsetse fly symbionts, Sodalis glossinidius and Wigglesworthia glossinidia, harbored, respectively by non-infected, Trypanosoma brucei gambiense infected and self-cured Glossina palpalis gambiensis tsetse flies
Microarray is a powerful and cheap method to identify and quantify gene expression in particular in a mix of total RNA extracted from biological samples such as the tsetse fly gut, including several organisms (here, the fly tissue and the intestinal microorganisms). Besides, biostatistics and bioinformatics allow comparing the transcriptomes from samples collected from differently treated flies...
متن کاملPrediction of Protein Complexes in Trypanosoma brucei by Protein Correlation Profiling Mass Spectrometry and Machine Learning*□S
A disproportionate number of predicted proteins from the genome sequence of the protozoan parasite Trypanosoma brucei, an important human and animal pathogen, are hypothetical proteins of unknown function. This paper describes a protein correlation profiling mass spectrometry approach, using two size exclusion and one ion exchange chromatography systems, to derive sets of predicted protein comp...
متن کاملComparative Genomics Reveals Multiple Genetic Backgrounds of Human Pathogenicity in the Trypanosoma brucei Complex
The Trypanosoma brucei complex contains a number of subspecies with exceptionally variable life histories, including zoonotic subspecies, which are causative agents of human African trypanosomiasis (HAT) in sub-Saharan Africa. Paradoxically, genomic variation between taxa is extremely low. We analyzed the whole-genome sequences of 39 isolates across the T. brucei complex from diverse hosts and ...
متن کاملModulation of Leishmania ABC protein gene expression through life stages and among drug-resistant parasites.
The ATP-binding cassette (ABC) protein superfamily is one of the largest evolutionarily conserved families and is found in all kingdoms of life. The recent completion of the Leishmania genome sequence allowed us to analyze and classify its encoded ABC proteins. The complete sequence predicts a data set of 42 open reading frames (ORFs) coding for proteins belonging to the ABC superfamily, with r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2010